M1.

Alternative method 1

```
\anglePCB=180-90-15 or 75
or
\anglePCB=90-15
    oe
    Angle may be seen on diagram
```

$\angle A B C=\angle P C B=$ their 75
and
$\angle B C D=180-$ their 75 or 105°
oeAngles may be seen on diagram

$$
x=105-75=30^{\circ}
$$

Full method required

Alternative method 2

$$
\begin{aligned}
& \angle P C B=180-90-15 \text { or } 75^{\circ} \\
& \text { or } \\
& \angle P C B=90-15 \\
& \quad \text { oe } \\
& \text { Angles may be seen on diagram }
\end{aligned}
$$

$\angle A B P=\angle P C B=$ their 75
and
$\angle A B P=$ their $75-15$ or 60°
and
$\angle B A C=180-90-$ their 60
oe
Angles may be seen on diagram

$$
x=\angle B A C=30^{\circ}
$$

Full method required

Alternative method 3

$$
\begin{aligned}
& \angle P C B=180-90-15 \text { or } 75^{\circ} \\
& \text { or } \\
& \angle P C B=90-15 \\
& \quad \text { oe } \\
& \quad \text { Angle may be seen on diagram }
\end{aligned}
$$

$$
\angle A B C=\angle P C B=\text { their } 75
$$

and
$\angle B A C=180$ - their 75 - their 75
oe
Angle may be seen on diagram
$x=\angle B A C=30^{\circ}$
Full method required

M2.
$O R=O P(=6 \mathrm{~cm}$ or sides of same square) or show 6 on $O R$ on diagram Must give reason if $O R$ not marked as 6
$O C=O A$ ($=8 \mathrm{~cm}$ or sides of same square) or show 8 on $O A$ on diagram Must give reason if $O A$ not marked as 8

Congruent as SAS. Might be stated in words such as two sides and included angle.
May use cosine rule to calculate third side. Must be correct and give correct value 4.1... then SSS can be given as reason or in words 'all three sides same'. If no reasons given penalise first omission but allow thereafter.

B1

M3.(a) 108

Corresponding
strand (i)
Mark is dependent on scoring B1
(b) 180-117 oe

63

M4.(a) 50
(b) 27
(c) $180-90-58$ oe
or 90-58

32

M5.3 $\times 180$ or 540 seen
Must be convinced that $360 \div 5$ is for the exterior angle
or Exterior angle $=360 \div 5$ or 72
May be on diagram
(Interior angle =) 108
Must be convinced that 108 is for the interior angle May be on diagram
$108-72$
May be on diagram
or acute angle in rhombus $=72$

$$
180-72-72
$$

or acute angle in rhombus $=180$ - their obtuse interior angle or $(180-108) \div 2$

36
ft for obtuse interior angles only

M6.(a) tan chosen

$$
\frac{h}{\sin 35}=\frac{1.2}{\sin 55}
$$

$$
\tan 35=\frac{\frac{h}{1.2}}{\frac{1.2 \sin 35}{\sin 55}}
$$

or $1.2 \tan 35$
$0.84 \ldots$

Allow 0.8 if working shown

(b) $2 \times$ their $0.84 \ldots$ oe
or $2.4 \tan 35$
$1.68 \ldots$ or 1.7
Answer on ft may be rounded

M7. $\frac{3 x}{x}=\frac{36}{x+4}$ oe

$$
\text { Scale factor } 3 \text { or } \frac{1}{3} \text { seen or implied }
$$

$3 x(x+4)=36 x$ oe

$$
36 \div 3(=12)
$$

$$
\begin{aligned}
& 3(x+4)=36 \text { oe } \\
& \text { or } 3 x^{2}+12 x=36 x \\
& 3 x+12=36 \quad \text { their } 12-4 \\
& \text { or } x+4=12 \\
& \text { or } x=8 \\
& \text { or their } 8 \times 3 \\
& \text { or } 3 x^{2}-24 x=0 \\
& \text { or } 3 x^{2}=24 x
\end{aligned}
$$

$$
24
$$

M8.(a) 180-42-90

$$
\text { or } 90-42
$$

$$
\text { or } 138-90
$$

$$
90+42+48=180
$$

(b) $360-102-64-57(=137)$
or Angles in quadrilateral $=360$ seen or implied

$$
\text { oe e.g. } 223+137=360
$$

180 - their 137

43

M9.(a) $(180-32) \div 2$ or $148 \div 2$

$$
180-90-16
$$

74
(b) 180-107 or 73 oe
or 107-90 or 17

180 - their 73 - their 73 oe
or 17×2

$$
(90-\text { their } 73) \times 2
$$

M10.180-107 or 73 oe or 107-90 or 17

180 - their 73 - their 73 oe
or 17×2

$$
(90-\text { their } 73) \times 2
$$

34

M11.

M1 for showing, or stating (right angles may be implied by subtraction) enough angles to solve the problem
ie. An obtuse angle written at A
or two obtuse angles written at B and C in same quadrant
$A 1$ for $A=120^{\circ}$ or
$A 1$ for $B=100$ and $C=110$ in same quadrant

180 - their A
or 360 - (90 + their B + their C)
60°
60 no working SC3
A1

M12.(a) 180-156

24
(b) 360-90-149 oe

M13. Equates two sides $5 w=3 w+3$

$$
\begin{aligned}
& 3 w+3=w+6 \\
& 5 w=w+6
\end{aligned}
$$

Collects like terms $5 w-3 w=3$

$$
\begin{aligned}
& 3 w-w=6-3 \\
& 5 w-w=6
\end{aligned}
$$

$$
(w=) 1.5
$$

Works out that all sides are 7.5
or solves another pair to get $(w=) 1.5$
Must have $3^{d d}$ side $=7.5$ and one side using their equation $=$ 7.5 as a minimum

