M1. Alternative method 1 ∠*PCB* = 180 – 90 – 15 or 75° or ∠*PCB* = 90 – 15 oe Angle may be seen on diagram **M1** $\angle ABC = \angle PCB =$ their 75 and ∠BCD = 180 – their 75 or 105° oe Angles may be seen on diagram **M1** $x = 105 - 75 = 30^{\circ}$ Full method required A1 Alternative method 2 $\angle PCB = 180 - 90 - 15 \text{ or } 75^{\circ}$ or $\angle PCB = 90 - 15$ oe Angles may be seen on diagram **M1** $\angle ABP = \angle PCB =$ their 75 and $\angle ABP = \text{their } 75 - 15 \text{ or } 60^\circ$ and ∠BAC = 180 - 90 - their 60 oe Angles may be seen on diagram

[3]

B1

B1

	$x = \angle BAC = 30^{\circ}$ Full method required	A1
	Alternative method 3	
	$\angle PCB = 180 - 90 - 15 \text{ or } 75^{\circ}$ or $\angle PCB = 90 - 15$ oe Angle may be seen on diagram	M1
	$\angle ABC = \angle PCB$ = their 75 and $\angle BAC = 180$ – their 75 – their 75 oe Angle may be seen on diagram	M1
	$x = \angle BAC = 30^{\circ}$ Full method required	A1
M2.	OR = OP (= 6cm or sides of same square) or show 6 on OR on diagram Must give reason if OR not marked as 6	
	OC = OA (= 8cm or sides of same square) or show 8 on OA on diagram Must give reason if OA not marked as 8	

 $\angle ROC = \angle AOP = 30$ with 90 - 60 or 120 - 90 stated or 60 shown as $\angle AOR$

M3.(a)

(b)

B1

[4]

Congruent as SAS. Might be stated in words such as two sides and included angle.

May use cosine rule to calculate third side. Must be correct and give correct value 4.1... then SSS can be given as reason or in words 'all three sides same'. If no reasons given penalise first omission but allow thereafter.

		B 1
108		
100		B 1
Correspond	ling strand (i) Mark is dependent on scoring B1	6.4
		QI
180 - 117	0e	M1
63		A1
50		B 1

(b) 27

M4.(a)

B1

[4]

	(c)	180 – 90 –	58 oe		
		or 90 – 58		M1	
		32		A1	[4]
M5. 3	5 × 180) or 540 se	en		
			Must be convinced that $360 \div 5$ is for the exterior angle		
	or E	xterior angle	e = 360 ÷ 5 or 72 May be on diagram	M1	
	(Inter	ior angle =)	108 Must be convinced that 108 is for the interior angle May be on diagram	A1	
	108 -	- 72			
			May be on diagram		
	or ac	cute angle in	n rhombus = 72 180 - 72 - 72		
	or ac	cute angle in	rhombus = 180 – their obtuse interior angle or $(180 - 108) \div 2$	M1	
	36		ft for obtuse interior angles only	A1ft	

[4]

AQA GCSE Maths - Simple Geometric Proofs

M6. (a)	tan chosen	
	$\frac{h}{1.2} = \frac{1.2}{1.2}$	
	sin35 sin55	N/1
		M1
	$h = \frac{h}{1.2}$	
	$\tan 35 = 1.2$	
	<u>sin55</u>	
	or 1.2 tan 35	Midon
		Wildep
	0.04	
	0.84	
	Allow 0.8 II working shown	A1
(b)	2 × their 0.84 oe	
	or 2.4 tan 35	
		M1
	1.68 or 1.7	
	Answer on ft may be rounded	
		A1ft

M7.
$$\frac{3x}{x} = \frac{36}{x+4}$$
 oe
Scale factor 3 or $\frac{1}{3}$ seen or implied

$$3x (x + 4) = 36x$$
 oe
 $36 \div 3 (= 12)$

M1

[5]

	3(x + 4) = 36 of	e their 12 – 4		
	or $3x^2 + 12x = 30$	6 <i>x</i>	M1	
	3x + 12 = 36	(x =) 8		
	or <i>x</i> + 4 = 12			
	or <i>x</i> = 8	or their 8 × 3		
	or $3x^2 - 24x = 0$			
	or $3x^2 = 24x$		M1	
	(3 <i>x</i> =) 24	24		
			A1	[5]
M8. (a	a) 180 - 42 - 9	90		
	or 90 – 42			
	or 138 – 90	0		

90 + 42 + 48 =180 M1

oe

A1

AQA GCSE Maths - Simple Geometric Proofs

(b)	360 - 102 - 64 - 57 (= 137)	
	or Angles in quadrilateral = 360 seen or implied	
	oe e.g. 223 + 137 = 360	M1
	180 – their 137	
		M1
	10	
	43	A1
M9. (a)	(180 - 32) ÷ 2 or 148 ÷ 2	
	180 - 90 - 16	M1
	74	41
		AI
(b)	180 - 107 or 73 oe	
()	or 107 – 90 or 17	
		M1
	180 - thoir 72 - thoir 72 co	
	$r_{10} = r_{10} r_{13} = r_{10} r_{13} \sigma_{e}$	
	(90 – their 73) × 2	M1den
		much
	34	

A1 [5]

[5]

or 17 × 2

34

A1 [3]

M1dep

M1 for showing, or stating (right angles may be implied by subtraction) enough angles to solve the problem

ie. An obtuse angle written at A

or two obtuse angles written at B and C in same quadrant

A1 for A = 120° **or**

A1 for B = 100 and C = 110 in same quadrant

	180 - their A			
	or 36	60 - (90 + their B + their C)	M1dep	
	60°	60 no working SC3	A1	[4]
M12.(a)	180 – 156	M1	
		24	A1	
	(b)	360 - 90 - 149 <i>oe</i>	M1	
		121	A1	[4]
M13.E	Equat	tes two sides $5w = 3w + 3$ 3w + 3 = w + 6 5w = w + 6	M1	
	Colle	ects like terms $5w - 3w = 3$ 3w - w = 6 - 3 5w - w = 6		

)

[4]

	M1dep
(<i>w</i> =) 1.5	A1
Works out that all sides are 7.5	
or solves another pair to get ($w =$) 1.5	
Must have 3^{rd} side = 7.5 and one side using their equation = 7.5 as a minimum	=
	A1